Spēka moments: pamati

Apskatīt video Khan Academy platformā: Khan AcademyTorque Basics

Transkripts:
00:00
- [Skolotājs] Iedomājies, ka šeit ir durvis
00:01
ar zilu durvju rokturi.
00:03
Jebkurš no šiem 10 ņūtonu spēkiem
00:05
liks durvīm griezties ap eņģi jeb asi,
00:09
ko dažreiz sauc arī par pagrieziena punktu.
00:11
Jebkurš no šiem spēkiem liks durvīm griezties.
00:13
Mans jautājums ir, ja tu varētu pielikt vienu no šiem spēkiem
00:16
vienā no šīm vietām,
00:17
kurš no šiem spēkiem, ja vispār kāds,
00:19
radītu vislielāko šo durvju leņķisko paātrinājumu?
00:23
Un tu varētu nodomāt: „Nu, 10 ņūtoni ir 10 ņūtoni.
00:26
Tie visi radīs vienādu leņķisko paātrinājumu,” bet tā nav tiesa.
00:28
Izrādās, ka durvju rokturus mēs liekam
00:30
durvju galā ne bez iemesla.
00:32
Šis sarkanais 10 ņūtonu spēks pie ārējās malas
00:34
radīs vislielāko leņķisko paātrinājumu.
00:36
Tas liks šīm durvīm paātrināties visstraujāk.
00:39
Un agrāk tas man nelika mieru.
00:40
Es domāju: „Kāpēc tam ir priekšrocība?”
00:43
Manuprāt, vislabāk par to domāt ir šādi.
00:45
Lai gan visi šie spēki ir pagriezušies par
00:46
vienādu leņķi, tātad tie ir pagriezušies par 20 grādiem,
00:49
un tagad tie visi ir pagriezušies par 30 grādiem,
00:51
tagad tie visi ir pagriezušies par 45, 60 un 90.
00:55
Lai gan šie spēki
00:57
visi ir pagriezušies par vienādu leņķi,
00:58
tie nav veikuši vienādu attālumu.
01:01
Daži no šiem spēkiem
01:02
ir pielikti, veicot lielāku attālumu.
01:03
Paskaties pats.
01:04
Ja tu iedomājies, ka šo lietu griez,
01:06
tad sarkanais spēks, šis rozā spēks ārpusē
01:09
veic daudz lielāku attālumu
01:12
nekā iekšējais dzeltenais spēks.
01:14
Šis spēks ir veicis pavisam mazu attālumu.
01:17
Un tu varētu domāt, nu, kāpēc tam ir nozīme?
01:18
Tam ir nozīme, jo, ja atceries, pastrādātais darbs...
01:22
Pastrādātais darbs ir proporcionāls spēka lielumam,
01:24
bet tie visi ir 10 ņūtoni,
01:25
tāpēc tam šeit nav īstas nozīmes.
01:27
Un tas ir arī proporcionāls attālumam,
01:29
kuru spēks veic.
01:31
Un, tā kā šis ārējais spēks
01:33
ir veicis daudz lielāku attālumu
01:35
nekā šie iekšējie spēki,
01:37
tas ir paveicis vairāk darba, pagriežoties par to pašu leņķi.
01:40
Un, ja tu paveic vairāk darba,
01:42
tu piešķir durvīm vairāk kinētiskās enerģijas,
01:44
tās kustēsies ātrāk pie tā paša leņķa,
01:48
salīdzinot ar to, ko izraisa šie pārējie spēki.
01:51
Un tāpēc rotācijas kustības mehānikā
01:53
nevar domāt tikai par spēkiem,
01:55
ir jādomā par kaut ko, ko sauc par spēka momentu.
01:58
Spēka momenta simbols ir šis interesantais T.
02:00
Tas ir grieķu burts „tau”.
02:02
Un spēka radītā spēka momenta lielums,
02:05
tātad ir nepieciešams spēks, lai radītu spēka momentu,
02:07
bet tas ir kas vairāk nekā tikai spēks.
02:08
Ir jāreizina r,
02:10
attālums no ass līdz spēkam,
02:13
ar spēka lielumu,
02:15
lai atrastu, cik lielu spēka momentu rada
02:17
dotais spēks.
02:19
Jo lielāks spēka moments tiek radīts,
02:21
jo lielāku leņķisko paātrinājumu tu iegūtu,
02:23
jo ātrāk kaut kas paātrinātos.
02:25
Tagad tev varētu rasties jautājums,
02:26
„Labi, es saprotu, ka lielāks spēks dod lielāku spēka momentu,
02:29
bet kāpēc te ir tikai r, nevis, piemēram, r kvadrātā?
02:31
Tas šķiet nedaudz nejauši, varbūt tas ir kā kvadrātsakne no r.”
02:34
Ja tu atceries loka garumu no senākiem laikiem,
02:37
loka garums ir r reiz theta.
02:39
Ja esmu divreiz tālāk no ass,
02:42
es iegūstu divreiz lielāku loka garumu.
02:44
Ja es iegūstu divreiz lielāku loka garumu, es paveicu divreiz vairāk darba.
02:47
Tu paveic divreiz vairāk darba,
02:48
tu iegūsti divreiz lielāku pievadīto kinētisko enerģiju,
02:50
un izrādās, ka divreiz lielāka kinētiskā enerģija
02:52
dos divreiz lielāku leņķisko paātrinājumu.
02:54
Tāpēc viss ir proporcionāls tieši r,
02:57
runājot par spēka momentu, tas šeit nav r kvadrātā.
03:00
Piemēram, pieņemsim, ka attālums no ass,
03:03
jo tam ir nozīme,
03:04
līdz šiem 10 ņūtoniem ir viens metrs.
03:07
Un no ass līdz violetajam spēkam bija divi metri.
03:10
Un no ass līdz šim durvju roktura spēkam bija trīs metri.
03:14
Šī spēka momenta formula nozīmē, ka, lai gan
03:16
tie visi ir 10 ņūtoni,
03:17
tie visi radīs dažāda lieluma spēka momentus.
03:19
Man būtu jāņem viens metrs reiz 10 ņūtoni,
03:21
kas man dotu 10 ņūtonmetrus.
03:24
Tātad spēka momenta mērvienība ir metri reiz ņūtoni,
03:27
bet mēs to parasti rakstām kā ņūtonmetrus.
03:29
Ja tu pērc dinamometrisko atslēgu,
03:31
to var iestatīt ņūtonmetros vai pēdu mārciņās,
03:34
ja lieto ASV sistēmu.
03:36
Un tad šis violetais spēks, lai arī tas ir 10 ņūtoni,
03:38
būtu jāreizina divi metri ar 10 ņūtoniem.
03:41
Tas radītu 20 ņūtonmetru lielu spēka momentu,
03:45
un durvju roktura spēks uzvar cīņā,
03:47
jo trīs reiz 10 radītu spēka momentu
03:51
30 ņūtonmetru apmērā.
03:53
Tātad vienāda lieluma spēks var radīt atšķirīgu
03:56
spēka momentu atkarībā no tā, cik tālu tas atrodas no ass.
03:59
Viena lieta, par ko jābūt uzmanīgam – spēka moments
04:01
tehniski ir vektors.
04:02
Tam ir virziens,
04:03
tas var būt pozitīvs vai negatīvs.
04:04
Ja tu nodarbojies ar pilnvērtīgu inženierzinātņu 3D fiziku,
04:07
tehniski šie spēka momenti būtu vērsti ārā no ekrāna,
04:10
ārā no lapas, bet ievada algebriskajā fizikā
04:13
un vairumā uzdevumu parasti pietiek ar to,
04:15
ka apskata tikai virzienu pretēji pulksteņrādītāja virzienam vai pulksteņrādītāja virzienā
04:19
kā spēka momenta virzienu.
04:21
Tas nozīmē, ka šie spēki lika šim objektam griezties
04:25
pretēji pulksteņrādītāja virzienam,
04:27
tāpēc tiem visiem bija viena un tā pati zīme.
04:29
Pieņemts virzienu pretēji pulksteņrādītāja virzienam saukt par pozitīvu.
04:32
Tātad mēs tos visus sauktu par pozitīviem.
04:34
Ja būtu kādi spēki, kas mēģinātu griezt sistēmu
04:37
pulksteņrādītāja virzienā, to spēka momentus sauktu par negatīviem.
04:40
Vari darīt jebkurā veidā, ja vien esi konsekvents.
04:42
Tomēr vairums grāmatu izvēlas šo pieņēmumu,
04:44
tāpēc tev tas būtu jāzina.
04:45
Un pēdējā lieta, par ko jābūt uzmanīgam,
04:47
es zīmēju visus šos spēkus glīti un perpendikulāri
04:50
attiecībā pret r, un, ja tā ir, tu vienkārši reizini r ar F.
04:53
Ja tavam spēkam ir dažādas komponentes,
04:56
tev jāpārliecinās, ka vienīgā komponente,
04:58
ko tu šeit ievieto, ir perpendikulārā daļa.
05:00
Tātad, ja šeit būtu kāds dīvains leņķis,
05:02
tev būtu nepieciešama tikai tā daļa, kas vērsta tieši
05:05
pret šo spēka plecu perpendikulārā leņķī.
05:10
Par to mēs runāsim vēlāk.
05:11
Pagaidām pamēģināsim atrisināt dažus uzdevumus, lai iemēģinātu roku
05:13
un pierastu pie šīs formulas.
05:15
Iedomājies šādu piemēru:
05:16
kur ir elegantas durvis, zini,
05:18
kā greznā viesnīcā vai restorānā,
05:20
tās ir rotējošas durvis, un tu vari ieiet
05:22
no jebkura virziena.
05:23
Šis būtu skats no putna lidojuma.
05:25
Tagad iedomājies, ka tu ieej viesnīcā,
05:27
tu stum durvis šeit,
05:28
tu mācījies fiziku, tu zini, ko darīt.
05:29
Tātad tu šeit pieliec 20 ņūtonu spēku.
05:31
Pieņemsim, ka kāds cits nāk no otras puses.
05:33
Tas ir neveikli, un viņš mēģina iet pretējā virzienā,
05:35
un iestājas strupceļš.
05:36
Jūs abi stumjat ar spēku, bet nekas nenotiek.
05:39
Un tas nenozīmē, ka abi spēki ir vienādi.
05:41
Ja rotācijas kustības ziņā esat nonākuši strupceļā,
05:44
tas nozīmē, ka jūsu spēka momenti ir vienādi un pretēji vērsti.
05:47
Tie ir pretēji, tiem ir vienāds lielums,
05:49
bet spēka momentiem būs pretēji virzieni.
05:51
Ja esat nonākuši strupceļā,
05:53
tas nozīmē, ka spēka momentam, ko tu radi ar saviem 20 ņūtoniem,
05:55
jābūt vienādam ar otras personas radīto spēka momentu.
05:59
Mēģināsim izrēķināt, cik lielu spēku
06:01
šai personai nāktos pielikt?
06:02
Tas nebūs 20 ņūtoni.
06:04
Viņš stumj tuvāk asij,
06:06
tāpēc viņam nāksies stumt ar lielāku spēku.
06:08
Cik lielu spēku?
06:09
Nu, mēs varam izmantot spēka momenta formulu, lai to atrastu.
06:11
Spēka momentiem ir jābūt vienādiem.
06:13
Ja šeit nav rotācijas, jūs esat līdzsvarā.
06:15
Ja tavs spēks ir 20 ņūtoni,
06:16
tu pieliec spēku trīs metru attālumā no ass.
06:19
Tas ir tavs r, tas būtu trīs metri,
06:22
reiz 20 ņūtoni nozīmē, ka tu radi 20 reiz 3,
06:25
tātad 60 ņūtonmetru lielu spēka momentu.
06:27
Tas nozīmē, ka otrai personai ir jārada
06:29
60 ņūtonmetru liels spēka moments, bet viņa r nav divi.
06:33
Esi uzmanīgs, vienmēr jāmēra no ass,
06:35
punkta, ap kuru notiek rotācija.
06:36
Tas būtu viens metrs.
06:38
Šīs durvis šeit ir pilnīgi simetriskas.
06:40
Tātad tas būtu viens metrs reiz F.
06:42
Un, ja tu ņem šos 60 ņūtonmetrus
06:45
un dali ar vienu metru,
06:47
tu iegūsi, ka šim spēkam
06:48
ir jābūt 60 ņūtoniem.
06:50
Tātad šai personai būs jāpieliek lielāks spēks.
06:52
Patiesībā viņš stūma trīs reizes tuvāk asij,
06:55
tāpēc viņam ir jāpieliek trīs reizes
06:57
lielāks spēks nekā tev.
06:58
Tev ir trīskārša priekšrocība, turot šīs durvis,
07:02
salīdzinot ar otru personu.
07:03
Labi, pamēģināsim vēl vienu,
07:05
lai pārliecinātos, ka mēs to saprotam.
07:06
Pieņemsim, ka tagad ir sastrēgumstunda, zini,
07:08
skats no putna lidojuma, tās pašas apaļās durvis.
07:10
Trīs cilvēki vienlaikus mēģina iziet cauri.
07:12
Tas būs trakonams.
07:13
Šoreiz es gribu zināt, tas nebūs strupceļš.
07:16
Šīs durvis griezīsies kādā virzienā.
07:17
Es gribu zināt, kāds ir kopējais spēka moments.
07:20
Tāpat kā var atrast kopējo spēku,
07:21
var atrast arī kopējo spēka momentu, bet jābūt uzmanīgam.
07:24
Tiem var būt dažādas zīmes,
07:25
tev attiecīgi jāsaskaita vai jāatņem.
07:27
Sāksim no šejienes.
07:28
Cik liels spēka moments būtu no šiem 10 ņūtoniem?
07:31
Tas ir pielikts trīs metru attālumā no ass,
07:34
tātad tā r ir trīs metri.
07:35
Tātad spēka moments no šī spēka būtu trīs metri
07:38
reiz 10 ņūtoni, un, tā kā tas ir vērsts
07:42
pretēji pulksteņrādītāja virzienam, es to vienkārši saukšu par pozitīvu
07:45
un man būs jāpieturas pie šīs izvēles.
07:47
Tagad aplūkosim šos astoņus ņūtonus.
07:48
Tu varētu domāt, ka tam būtu pretēji vērsta
07:50
spēka momenta zīme nekā šiem 10 ņūtoniem,
07:53
jo astoņi ir uz leju, 10 ir uz augšu,
07:54
bet tas arī mēģina griezt šīs durvis
07:57
pretēji pulksteņrādītāja virzienam.
07:59
Tātad, runājot par spēkiem,
08:00
šis 10 ņūtonu un 8 ņūtonu spēks ir pretēji vērsti,
08:03
bet, runājot par spēka momentiem, tie ir vienā virzienā.
08:06
Tie abi izraisa rotāciju pretēji pulksteņrādītāja virzienam.
08:08
Ja es spēka momentu no 10 ņūtoniem nosaucu par pozitīvu,
08:11
man spēka moments no šiem astoņiem ņūtoniem arī jānosauc par pozitīvu,
08:14
jo tas mēģina radīt spēka momentu tajā pašā virzienā.
08:16
Tātad man būtu viens metrs kā r astoņniekam
08:20
reiz astoņi ņūtoni būtu spēka moments
08:22
no astoņiem ņūtoniem.
08:24
Un tad man šeit ir vēl viens spēks.
08:25
Šis piecu ņūtonu spēks mēģina griezt pulksteņrādītāja virzienā.
08:28
Tā kā es nosaucu virzienu pretēji pulksteņrādītājam par pozitīvu,
08:31
man šis spēka moments būs jāpadara par negatīvu,
08:32
tātad mīnus trīs metri, r no ass
08:36
līdz šiem pieciem ņūtoniem ir trīs metri,
08:39
reizināts ar pieciem ņūtoniem.
08:41
Un, ja tu ņem 30 plus 8 mīnus 15,
08:44
tu iegūsi kopējo
08:45
pozitīvu spēka momentu 23 ņūtonmetru apmērā,
08:48
tātad tas nav strupceļš.
08:49
Būs zināms leņķiskais paātrinājums,
08:52
ko izraisīs šis kopējais spēka moments.
08:55
Tātad, lai apkopotu, tāpat kā kopējie spēki
08:58
var radīt parasto paātrinājumu,
09:01
kopējie spēka momenti var radīt leņķisko paātrinājumu.
09:04
Ja nav kopējā spēka momenta,
09:05
tas nozīmē, ka nav leņķiskā paātrinājuma.
09:07
Veids, kā atrast spēka momentu no dotā spēka,
09:10
ir ņemt r, attālumu no ass
09:13
līdz vietai, kur pielikts šis spēks, un reizināt
09:16
ar spēka lielumu, ja vien tas ir spēka lielums,
09:19
kas ir perpendikulārs šim spēka plecam
09:23
jeb šim r virzienam.
09:25
Esi uzmanīgs, jo spēka moments ir vektors.
09:27
Mēs parasti uzskatām virzienu pretēji pulksteņrādītājam par pozitīvu,
09:30
un pulksteņrādītāja virzienā par negatīvu, bet, ja tu esi konsekvents,
09:34
tu vari nosaukt jebkuru no tiem
09:36
par pozitīvu,
09:37
ja vien otru nosauc par negatīvu.

Kopsavilkums

Kopsavilkums

Šis video sniedz visaptverošu ievadu griezes momenta jēdzienā fizikā. Tajā paskaidrots, ka griezes moments ir spēka rotācijas ekvivalents un ka tieši tas, nevis tikai pats spēks, liek objektam griezties vai izjust leņķisko paātrinājumu. Kopsavilkumā ir uzsvērta tiešā saistība starp griezes momentu, pielikto spēku un attālumu no rotācijas ass. Video aplūko arī griezes momenta vektoriālo dabu, definējot zīmju pieņemto kārtību, kur kustība pretēji pulksteņrādītāja virzienam ir pozitīva, bet pulksteņrādītāja virzienā – negatīva, un noslēdzas ar kopējā griezes momenta jēdzienu.

Apskatītās tēmas

  • Griezes moments: Definīcija kā griezes jeb rotācijas spēks.
  • Leņķiskais paātrinājums: Griezes momenta ietekme uz objekta rotāciju.
  • Saistība starp spēku, attālumu un griezes momentu: Paskaidrojums, kāpēc viens un tas pats spēks rada lielāku griezes momentu un leņķisko paātrinājumu, ja to pieliek tālāk no rotācijas ass (griezpunkta). Tas ir saistīts ar padarītā darba jēdzienu (Darbs = Spēks × Attālums), jo tālāk pielikts spēks veic lielāku ceļu pie tā paša pagrieziena leņķa.
  • Griezes momenta formula: Iepazīstināšana ar formulu Griezes moments (τ) = r × F, kur r ir attālums no ass (spēka plecs) un F ir spēks, kas pielikts perpendikulāri šim attālumam.
  • Griezes momenta mērvienības: Ņūtonmetri (Nm) un pēdas-mārciņas.
  • Griezes moments kā vektors: Paskaidrojums, ka griezes momentam ir virziens, pieņemot, ka kustība pretēji pulksteņrādītāja virzienam ir pozitīva, bet pulksteņrādītāja virzienānegatīva.
  • Kopējais griezes moments: Jēdziens par visu uz objektu darbojošos griezes momentu vektoriālās summas aprēķināšanu, lai noteiktu rezultējošo leņķisko paātrinājumu. Ja kopējais griezes moments ir nulle, leņķiskā paātrinājuma nav (rotācijas līdzsvars).

Darbības un piemēri

  1. Durvju atvēršana: Video sākas ar vizuālu piemēru, kurā durvis tiek stumtas dažādos attālumos no eņģēm (ass). Tas parāda, ka spēks, kas pielikts pie durvju roktura (vistālāk no eņģēm), ir visefektīvākais rotācijas radīšanai.
  2. Atsevišķu griezes momentu aprēķināšana: Skaitliskā piemērā tiek aprēķināts griezes moments, ko rada 10 N spēks, pielikts 1 m, 2 m un 3 m attālumā no ass, iegūstot attiecīgi 10 Nm, 20 Nm un 30 Nm lielu griezes momentu.
  3. Neizšķirts pie virpuļdurvīm: Problēmas risināšanas scenārijs rāda virpuļdurvis no putna lidojuma. Divi cilvēki tās stumj, radot situāciju bez kustības (patstāvokli). Video parāda, kā aprēķināt spēku, kas otram cilvēkam jāpieliek tuvāk asij, lai līdzsvarotu pirmā cilvēka radīto griezes momentu.
  4. Kopējā griezes momenta aprēķināšana: Otrā piemērā ar virpuļdurvīm trīs cilvēki stumj durvis vienlaicīgi. Video demonstrē, kā aprēķināt kopējo griezes momentu, saskaitot pozitīvos (pretēji pulksteņrādītāja virzienam) griezes momentus un atņemot negatīvos (pulksteņrādītāja virzienā) griezes momentus, lai noteiktu galīgo rotācijas virzienu.